
International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014 561
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Some thoughts on Refactoring for Aspect Orient-
ed Programming using AspectJ

Geeta Bagade(Mete), Dr. Shashank Joshi

Abstract— Aspect Oriented programming (AOP) is not something new. But it has caught the attention of the developers recently. AOP’s
main aim to provide better means to address the issue of separation of concerns.AOP is implemented by using a variety of tools. These
tools are an extension to the programming languages that already exist. AspectJ is one such language which is an extension to the Java
Programming Language. Refactoring the existing system requires us to change the code . So, refactoring is a process of changing the
software system in such a way that the behavior of the program does not change. In this paper, we propose a new set of refactoring that
can be applied to Aspect Oriented Programs.

Index Terms—Refactoring, Aspect Oriented Programming, AOP, Aspect Oriented Systems, Concerns, AspectJ, Pointcut, Joinpoint

—————————— ——————————

1 INTRODUCTION
spect Oriented Programming (AOP) :It is a paradigm
that supports two main goals

1. Separation of Concerns
2. A mechanism to describe the concerns that cross-

cut other components in the system.
It is implemented by using a wide set of tools that are spe-
cific to that programming language. These tools are exten-
sions to the programming languages that already exist.
AspectJ is one such language which is an extension to Java
programming language. The language constructs of As-
pectJ include
1. Aspect: It is similar to a class. It defines the pointcut

and the advice. It is compiled by using the AspectJ
compiler which weaves the concerns into the ob-
jects that already exist.

2. Joinpoint: It is a point of execution in the program
3. Pointcut: It is the place where advices can be inserted
4. Advice: It is a construct that tells which code should

execute at the join point. The code can execute before,
after or around a join point. A “before” advice will
run before the code at the joinpoint. The “after” ad-
vice will execute after the code at the join point. The
“around” advice surrounds the code that exists at the
joinpoint.

Refactoring: It is a process of changing the existing sys-
tem or software in such a way that the behaviour of the
program or the system does not change. Refactoring can
be done manually as well as by using some refactoring
tools

1.1 Refactoring Techniques: There are a number of tech-
niques used for refactoring. Some of them are

1. Assertions
2. Graph Transformations
3. Program Slicing
4. Software Metrics
5. Formal Concept Analysis
6. Program Refinement

Assertion technique can be used to express properties that
should hold before the refactoring is applied and after the re-
factoring is applied. In Graph Transformations, every refactor-
ing corresponds to a graph production rule. Each refactoring
application also corresponds to a graph transformation. Pro-
gram Slicing deals with restructuring function or procedure
extraction. This technique can be used to guarantee that the
refactoring will preserve the behaviour of interest. Software
metrics is used before refactoring is applied to measure the
quality of the software and then identify the places in the
software that need refactoring. It is then used after the refac-
toring is done to measure the improvements that have taken
place in the software. Formal Concept analysis can be used to
restructure object oriented class hierarchies in a way that the
behaviour is preserved. The program refinement technique is
used to express the changes in the program in a formal way
such that the behaviour is preserved. Program refinement
technique is used in the experiments which will be covered in
the later part of this paper

1.2 The Refactoring Process:
This process consists of six steps as mentioned below
1. Identify the place in the code where the software needs to

be refactored.
2. Find out which refactoring should be applied in the code
3. Guarantee that the refactoring preserves the behaviour of

the software
4. Apply the refactoring
5. Assess the effect of the refactoring
6. Maintain the consistency between the refactored code and

the software artifacts like documentation, design docu-
ments, requirement specifications, tests etc.

A

————————————————
• Geeta Bagade(Mete) is currently pursuing her Ph.D in Computer Science

from Bharati Vidyapeeth Deemed University, Pune,India
E-mail: geetamete@gmail.com

• Dr.Shashank Joshi is the Ph.D Guide. He works as a professor in Bhara-
tiVidyapeeth Deemed University’s Engineering College,Pune, India.
E-mail: sdj@live.in

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014 562
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Although there are plenty of refactorings available in this do-
main of AOP, there is a need to investigate other refactoring
that will help is maintaining the software along with preserv-
ing its behaviour

1.3 The Refactoring Process Model

2 NEW REFACTORINGS IDENTIFIED:

2.1 Name of the refactoring: Make the aspect unprivi-
leged: There are some aspects in which the advice or inter-
type members need to access the private or protected re-
sources of other types. To allow this aspects are declared as
privileged. A privileged aspect can access the private inter-
type declarations made by other aspects. So code in privileged
aspect can access all its members even those that are private.
The proposed refactoring is to remove the keyword “privi-
leged” from the aspect and make it unprivileged so that it
cannot access the private members.

2.1.1 Refactoring Mechanics

1. Introduce a public member function that accesses the
private data or method

2. In the aspect code, wherever there are references

made to the variable that is private , replace it with
objectname.functionname

3. Test if the restructured code preserves the behaviour

2.1.2 Experimented Code that contains the aspect that
is privileged
privileged aspect A {
static final int MAX = 1000;
before(int x, C c): call(void C.incI(int)) && target(c) && args(x)
{
 if (c.i+x > MAX) throw new RuntimeException();
 }
 }

class C {
private int i = 0;
void incI(int x) { i = i+x; }
public static void main(String[] args) {

C c = new C();
c.incI(10);
System.out.println("Working Prototype");

 }

}

In the above code there is a variable “i” which is declared as
private. Since the aspect is declared as privileged, it is able to
directly access that variable. Now let us remove the keyword
“privileged” and refactor the code.

2.1.3 Code after applying the refactoring
aspect A {

static final int MAX = 1000;
before(int x, C c): call(void C.incI(int)) && target(c)
&& args(x) {
 if (c.getI()+x > MAX)

throw new RuntimeException();
 }

 }

class C {

private int i = 0;
void incI(int x) { i = i+x;
}

int getI()
{
 return i;
}

public static void main(String[] args) {

C c = new C();
 c.incI(10);
 System.out.println("Working Prototype");

 }

Original Code

Identify the place in the code where the
refactoring needs to be applied

Identify the candidate that should be refac-
tored. The candidate can be variable, as-

pect, pointcut , advice etc

Select Appropriate Refactoring

Apply that refactoring to the Original Code

Assess the effect of the refactoring (number
of lines of code, program execution time

etc)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014 563
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

}
As seen in the refactored code above, the place where the vari-
able i was accessed is replaced with the method call. This
method is declared inside the class and is used in the aspect.

2.2 Name of the refactoring: Replace the pointcut
name with its designator
A pointcut is a construct that tells the AOP language when it
should match the join point. The purpose of a pointcut is to
group the designators. A pointcut designator identifies the
pointcut either by its name or by an expression. A pointcut can
be declared inside an aspect, a class or an interface. Most of
the pointcuts have a specific syntax as shown here

[access specifier] pointcut pointcutName(arguments): poincut-
definition.

The access specifier can be public, private etc. Proposed refac-
toring is as described below. We have a pointcut written as
shown below
pointcut P1() : call (int getI());

The advice written is

before(int x, C c): P1() && target(c) && args(x)

After refactoring the code , the statement P1() should be re-
placed by its actual definition as shown below

before(int x, C c): call(void C.incI(int)) && target(c) && args(x)

2.2.1 Refactoring Mechanics

1. Identify the pointcut that should be refactored
2. Replace the name of the pointcut with its designators
3. Test if the restructured code preserves the behaviour

2.2.2 Experimented Code that contains the pointcut
name

aspect A {

static final int MAX = 1000;
pointcut P1() : call (int getI());
pointcut P2() : call (void incI(int));
pointcut P3() : execution (int getI());
pointcut P4() : execution (void incI(int)) ;

before(int x, C c): P2() && target(c) && args(x) {
 System.out.println("Before Calling IncI");
 System.out.println(thisJoinPoint.getSignature());
 if (c.getI()+x > MAX)
 throw new RuntimeException(); }
before() : P1() {
 System.out.println("Before calling getI");
 System.out.println(thisJoinPoint.getSignature());

}

after() : P1() {
 System.out.println("After calling getI");
 System.out.println(thisJoinPoint.getSignature());
}

before() : P3() {
 System.out.println("Before executing getI");
 System.out.println(thisJoinPoint.getSignature());
}

after() : P3() {
 System.out.println("After executing getI");
 System.out.println(thisJoinPoint.getSignature());
}

after(int x, C c): P2() && target(c) && args(x) {
 System.out.println("After Calling IncI");
 System.out.println(thisJoinPoint.getSignature());
}

before(int x, C c): P4() && target(c) && args(x){
 System.out.println("Before Executing IncI");
 System.out.println(thisJoinPoint.getSignature());
}

after(int x, C c): P4() && target(c) && args(x) {
 System.out.println("After Executing IncI");
 System.out.println(thisJoinPoint.getSignature());
 }

class C {

private int i = 0;
void incI(int x) { i = i+x; }
int getI(){
 return i;
 }
public static void main(String[] args) {

C c = new C();
 c.incI(10);
 System.out.println("Working Prototype");
 }

}

2.2.3 Refactored code that contains the pointcut desig-
nator

aspect A {

static final int MAX = 1000;
before(int x, C c): call(void C.incI(int)) && target(c)
&& args(x)
 {
 System.out.println("Before Calling IncI");
System.out.println(thisJoinPoint.getSignature());
 if (c.getI()+x > MAX)

throw new RuntimeException();

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014 564
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

 }

 before() : call (int getI()) {
 System.out.println("Before calling getI");
 System.out.println(thisJoinPoint.getSignature());
}

after() : call (int getI()) {
 System.out.println("After calling getI");
 System.out.println(thisJoinPoint.getSignature());

 }

before() : execution (int getI()) {
 System.out.println("Before executing getI");
 System.out.println(thisJoinPoint.getSignature());
}

after() : execution (int getI()) {
 System.out.println("After executing getI");
 System.out.println(thisJoinPoint.getSignature());
}

after(int x, C c): call (void incI(int)) && target(c) && args(x)
{
 System.out.println("After Calling IncI");
 System.out.println(thisJoinPoint.getSignature());
 }

 before(int x, C c): execution (void incI(int)) && target(c) &&
args(x)
{
 System.out.println("Before Executing IncI");
 System.out.println(thisJoinPoint.getSignature());
}

after(int x, C c): execution (void incI(int)) && target(c) &&
args(x) {
 System.out.println("After Executing IncI");
 System.out.println(thisJoinPoint.getSignature());
 }
 }

3 CONCLUSIONS
We propose a set of refactorings that can be used to restruc-
ture the AspectJ code. The identified refactorings were tested
to see if the behaviour of the program remains the same. The
refactorings did preserve the behaviour of the program. By
restructuring the code the quality of the code is enhanced and
modular applications can be developed.These refactorings
have been derived based on the existing literature in this do-
main.

REFERENCES

[1] Deepak Dahiya, R. K. (2006). MOVING FROM AOP TO AOSD DE-

SIGN LANGUAGE. International Journal of Computer Science and
Network Security .

[2] Dr S.A.M.Rizvi, Z. K. (2008). Introduction of Aspect Oriented Tech-
niques for refactoring legacy software. International Journal of Com-
puter Applications.

[3] Eli Tilevich, Y. S. (2005). Binary Refactoring: Improving Code Behind
the Scenes. ACM .

[4] Kulkarni, K. S. (2010). Modularization of Enterprise Application
Security Through Spring AOP. International Journal of Computer
Science & Communication .

[5] Leonardo Cole, P. B. Deriving Refactorings for AspectJ. OOPSLA, (p.
2004).

[6] Lerner, M. S. (2007). Beyond Refactoring: A Framework for Modular
Maintenance of Crosscutting Design Idioms.

[7] Lili He, †. a. (2006). Aspect Mining Using Clustering and Association
Rule Method. IJCSNS International Journal of Computer Science and
Network Security .

[8] Liu, S. A. (2006). On the Notion of Functional Aspects in Aspect-
Oriented Refactoring. Workshop on Aspects, Dependencies and In-
teractions, France.

[9] Lodewijk Bergmans, E. E. (2008). Software Engineering Properties of
Languages and Aspect Technologies. Seventh International Confer-
ence on Aspect-Oriented Software Development.

[10] Michael Mortensen, S. G. (2010). Aspect-Oriented Refactoring of
Legacy Applications: An Evaluation. IEEE Transactions on Software
Enginering .

[11] Miguel Pessoa Monteiro, J. M. (2004). Refactoring Object-Oriented
Systems with Aspect-Oriented Concepts. Ph.D. progress report.

[12] Miguel Pessoa Monteiro, J. M. (2003). Some Thoughts On Refactor-
ing Objects to Aspects. AOSD .

[13] Santiago A. Vidal, E. S. (2009). Aspect Mining meets Rule-based Re-
factoring. ACM .

[14] Steve Counsell, H. H. (2010). An Empirical Investigation of Code
Smell ‘Deception’ and Research Contextualisation through Paul’s
Criteria. Journal of Computing and Information Technology - CIT 18

[15] Tom Mens, T. T. (2004). A Survey of Software Refactoring. IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, .

IJSER

http://www.ijser.org/

	1 Introduction
	References

